Claudia Alfes

Foto: Universität Bielefeld/Michael Adamski

Prof. Dr. Claudia Alfes


Bielefeld University

Faculty of MathematicsPostfach 10013133501 BielefeldGermanyEmail: alfes@math.uni-bielefeld.deRoom: V5 204Phone: +49 521 106 2538

About me

My research centers around the theory of modular forms and their generalizations as well as its various applications in number theory, geometry, combinatorics, physics, and representation theory.

Since March 2021 I am a professor at Bielefeld University. Before I was an assistant professor at Paderborn University. I obtained my PhD at TU Darmstadt under the direction of Jan Bruinier in 2015 and spent some time in Heidelberg and Cologne as a Postdoc afterwards.


More information:


Publications and Preprints

22) C. Alfes, B. Depouilly, P. Kiefer, M. Schwagenscheidt, Cycle integrals of meromorphic Hilbert modular forms, arXiv:2406.03465, Preprint (2024). pdf

21) C. Alfes, P. Kiefer, J. Mazáč, Measures, modular forms, and summation formulas of Poisson type, arXiv:2405.15620, Preprint (2024). pdf

20) C. Alfes, J. Maglione, C. Voll, Ehrhart polynomials, Hecke series, and affine buildings, arXiv:2402.15412, Preprint (2024), accepted as an extended abstract for FPSAC 2024. pdf

19) C. Alfes, M. Mertens, On Kleinian mock modular forms, Res. Math. Sci. 11, 6 (2024). pdf

18) C. Alfes-Neumann, J. Funke, M. Mertens, E. Rosu, On Jacobi-Weierstrass mock modular forms, arXiv:2303.01445, Preprint. pdf

17) C. Alfes-Neumann, J. Bruinier, M. Schwagenscheidt, Harmonic weak Maass forms and periods II, Math. Ann., accepted for publication (2024). pdf

16) C. Alfes-Neumann, I. Burban, M. Raum, A classification of polyharmonic Maaß forms via quiver representations, J. of Algebra, accepted for publication (2024). pdf

15) C. Alfes-Neumann, M. Raum, A classification of harmonic weak Maaß forms of half-integral weight, Res. Number Theory, 9:48 (2023). pdf

14) C. Alfes-Neumann, K. Bringmann, J. Males, M. Schwagenscheidt, Cycle integrals of meromorphic modular forms and coefficients of harmonic Maass forms, J. Math. Anal. Appl. 497 (2021), no. 2, Paper No. 124898, 15 pp. pdf

13) C. Alfes-Neumann, M. Schwagenscheidt, Traces of reciprocal singular moduli, Bull. Lond. Math.Soc. 52 (2020), no. 4, 641-656. pdf

12) C. Alfes-Neumann, K. Bringmann, M. Schwagenscheidt, On the rationality of cycle integrals of meromorphic modular forms, Math. Ann. 376 (2020), no. 1-2, 243-266. pdf

11) C. Alfes-Neumann, M. Schwagenscheidt, Shintani theta lifts of harmonic Maass forms, Trans. Amer. Math. Soc. 374 (2021), no. 4, 2297–2339. pdf

10) C. Alfes-Neumann, M. Schwagenscheidt, Identities of Cycle Integrals of Weak Maass Forms, Ramanujan J. 52 (2020), no. 3, 683-688. pdf

9) C. Alfes-Neumann, M. Schwagenscheidt, A theta lift related to the Shintani lift, Advances in Mathematics, Volume 328 (2018), 858-889. pdf

8) C. Alfes, M. Griffin, K. Ono, and L. Rolen, Weierstrass mock modular forms and elliptic curves, Research in Number Theory, 1:24 (2015). pdf

7) C. Alfes, Formulas for the coefficients of half-integral weight harmonic Maass forms, Mathematische Zeitschrift, Volume 227, Issue 3 (2014), 769-795. pdf

6) C. Alfes, and T. Creutzig, The mock modular data of a family of superalgebras, Proc. Amer. Math. Soc., 142 (2014), 2265-2280. pdf

5) C. Alfes, and S. Ehlen, Twisted Traces of CM values of weak Maass forms, J. Number Theory,Volume 133, Issue 6, 1827-1845. pdf

4) C. Alfes, Parity of the coefficients of Klein’s $j$-function, Proc. Amer. Math. Soc., 141 (2013), 123-130. pdf

3) C. Alfes, K. Bringmann, and J. Lovejoy, Automorphic properties of generating functions for generalized odd rank moments and odd Durfee symbols, Math. Proc. Cambridge Phil. Soc., 151 (2011), 385-406. pdf

2) C. Alfes, M. Jameson, and R. Lemke Oliver, Proof of the Andrews-Alder Conjecture, Proc. Amer. Math. Soc. 139 no. 1 (2011), 63-7. pdf

1) C. Alfes, Congruences for Ramanujan’s $\omega(q)$,  Ramanujan J. 22 (2010), no. 2, 163-169. pdf


Dissertation

C. Alfes, CM values and Fourier coefficients of harmonic Maass forms, Dissertation, TU Darmstadt, tuprints. pdf

 

Miscellaneous

C. Alfes-Neumann, Modulformen - Fundamentale Werkzeuge der Mathematik, Springer, Essentials.

C. Alfes-Neumann, Algebraic formula for the partition function, entry in Encyclopedia of Srinivasa Ramanujan and His Mathematics, editors: Krishnaswami Alladi, George E. Andrews, Bruce C. Berndt, and Ken Ono, accepted.

C. Alfes-Neumann, An introduction to the theory of harmonic Maass forms, In: Bruinier J., Kohnen W. (Eds) L-Functions and Automorphic Forms, Contributions in Mathematical and Computational Sciences, vol 10. Springer, Cham.



News

Press

Teaching

Winter term 2024/25:

Lecture "Algebra", Lecture "Modular forms"

Summer term 2024:

Lecture "Linear Algebra II"

Winter term 2023/24:

Lecture "Linear Algebra I"

Summer term 2023:

Seminar "Partition function"

Winter term 2022/23:

Lecture "Modular forms"

Summer term 2022:

Lecture "Selected chapters of mathematics", lecture "Complex analysis II"

Summer term 2021:

Lecture "Geometry (Gym/Ge)", Research seminar "Geometric analysis and number theory"

Winter term 2020/21

Lecture "Linear Algebra II",  Research seminar "Geometric analysis and number theory"

Summer term 2020

Lecture "Linear Algebra I",  Research seminar "Geometric analysis and number theory"

Winter term 2019/20

Lecture "Introduction to cryptography", Seminar "Quadratic forms", Research seminar "Geometric analysis and number theory"

Summer term 2019: 

Seminar "Borcherds' products", Research seminar "Geometric analysis and number theory"

Winter term 2018/19:

Lecture "Automorphic forms"

Summer term 2018:

Lecture "Introduction to cryptography"

Winter term 2017/18:

Lecture "Complex Analysis", Seminar "Elliptic curves"


Team

PhD students: Anna Guntermann, Rebekka Strathausen

Postdocs: Gabriele Bogo, Annika Burmester, Paul Kiefer

Conferences and Workshops